首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7650篇
  免费   1391篇
  国内免费   1947篇
  2023年   309篇
  2022年   212篇
  2021年   204篇
  2020年   449篇
  2019年   457篇
  2018年   532篇
  2017年   493篇
  2016年   505篇
  2015年   485篇
  2014年   492篇
  2013年   592篇
  2012年   411篇
  2011年   457篇
  2010年   327篇
  2009年   419篇
  2008年   421篇
  2007年   425篇
  2006年   399篇
  2005年   325篇
  2004年   297篇
  2003年   295篇
  2002年   300篇
  2001年   249篇
  2000年   214篇
  1999年   188篇
  1998年   171篇
  1997年   136篇
  1996年   135篇
  1995年   123篇
  1994年   131篇
  1993年   94篇
  1992年   102篇
  1991年   65篇
  1990年   62篇
  1989年   58篇
  1988年   58篇
  1987年   41篇
  1986年   42篇
  1985年   56篇
  1984年   31篇
  1983年   19篇
  1982年   42篇
  1981年   30篇
  1980年   22篇
  1979年   23篇
  1978年   19篇
  1976年   18篇
  1974年   8篇
  1972年   8篇
  1958年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Ola Broberg 《Hydrobiologia》1987,150(1):11-24
The acidified lakes Lake Gårdsjön and Lake Stora Hästevatten the reference lake have been monitored since 1979 and 1980 respectively. The lakes are situated in SW Sweden; in an area severly affected by acid deposition. Lake Gårdsjön was limed in spring 1982. This paper analyses changes in nutrient concentrations upon liming of Lake Gårdsjön. The liming of Lake Gårdsjön was followed by a slight increase in ammonium, nitrate, and dissolved organic nitrogen concentrations. A drastic decrease occurred in particulate nitrogen and particulate carbon, whereas dissolved organic carbon increased. Total phosphorus and particulate phosphorus concentrations were similar to pre-limed conditions. The long-term decrease in phosphorus concentration, exhibited by the reference lake, was not identified in Lake Gårdsjön after liming, but total phosphorus concentration was still less than half compared to Lake Gårdsjön in the early 1970's. Additional measures such as phosphorus fertilization, should in certain cases be considered in addition to liming if the goal is to restore lakes to their pre-acidic conditions.  相似文献   
2.
Degrees of colonization of palynomorphs from six mangrove plants by chytrids and thraustochytrids in four mangrove plant communities at each stage of the pre–depositional taphonomic process were investigated using a pollen–baiting method. Chytrids and thraustochytrids were the dominant group colonizing palynomorphs in mangroves, gaining access to the cytoplasm through the wall or aperture. There were no significant differences in the degree of colonization between the different plant communities. Pollen with a larger size and/or extensive apertural region appeared to be the most colonized, while the absence of apertures and the presence of a thick wall seemed to reduce the chance of colonization by these microorganisms. Taphonomic experiments showed that the longer palynomorphs take to settle into the mangrove sediments, the lower the possibility of survival from the destructive colonization by chytrids and thraustochytrids and consequently the less carbon that will be sequestered.  相似文献   
3.
Series of nanoporous carbons are prepared from sunflower seed shell (SSS) by two different strategies and used as electrode material for electrochemical double-layer capacitor (EDLC). The surface area and pore-structure of the nanoporous carbons are characterized intensively using N2 adsorption technique. The results show that the pore-structure of the carbons is closely related to activation temperature and dosage of KOH. Electrochemical measurements show that the carbons made by impregnation-activation process have better capacitive behavior and higher capacitance retention ratio at high drain current than the carbons made by carbonization-activation process, which is due to that there are abundant macroscopic pores and less interior micropore surface in the texture of the former. More importantly, the capacitive performances of these carbons are much better than ordered mesoporous carbons and commercial wood-based active carbon, thus highlighting the success of preparing high performance electrode material for EDLC from SSS.  相似文献   
4.
5.
Results of a comparative study of the sensitivity of the system of respiratory control to increases in the CO2 concentration and the intensity of free-radical processes in young and elderly subjects are described. It is shown that normal (natural) aging is accompanied by a decrease in the sensitivity of the respiratory system to hypercapnic stimulation and a parallel significant decrease in the activity of catalase in the blood of examined subjects. Mechanisms responsible for the modifications of the sensitivity of the system of respiratory control to hypercapnia are discussed; these shifts can be at least partly related to changes in the intensity of production of free radicals observed in elderly subjects. Neirofiziologiya/Neurophysiology, Vol. 40, No. 1, pp. 53–57, January–February, 2008.  相似文献   
6.
《植物生态学报》2016,40(9):958
Large scale herbivorous insect outbreaks can cause death of regional forests, and the events are expected to be exacerbated with climate change. Mortality of forest and woodland plants would cause a series of serious consequences, such as decrease in vegetation production, shifts in ecosystem structure and function, and transformation of forest function from a net carbon sink into a net carbon source. There is thus a need to better understand the impact of insects on trees. Defoliation by insect pests mainly reduces photosynthesis (source decrease) and increases carbon consumption (sink increase), and hence causes reduction of nonstructural carbohydrate (NSC). When the reduction in NSC reaches to a certain level, trees would die of carbon starvation. External environment and internal compensatory mechanisms can also positively or negatively influence the process of tree death. At present, the research of carbon starvation is a hotspot because the increase of tree mortality globally with climate change, and carbon starvation is considered as one of the dominating physiological mechanisms for explaining tree death. In this study, we reviewed the definition of carbon starvation, and the relationships between the reduction of NSC induced by defoliation and the growth and death of trees, and the relationships among insect outbreaks, leaf loss and climate change. We also presented the potential directions of future studies on insect-caused defoliation and tree mortality.  相似文献   
7.
8.
9.
Dynamic Light Regulation of Photosynthesis (A Review)   总被引:9,自引:7,他引:2  
Regulatory reactions providing the photosynthetic apparatus with the ability to respond to variations of irradiance by changes in activities of the light and the dark stages of photosynthesis within a time range of seconds and minutes are considered in the review. At the light stage, such reactions are related to the changes in both distribution of light energy between two photosystems and probability of nonphotochemical dissipation of absorbed quanta in PSI and PSII. These regulatory reactions operate in a negative feedback mode, thus avoiding overreduction of electron transport chain and minimizing the probability of generation of reactive oxygen species. The crucial role in preventing the generation of reactive oxygen species belongs to dynamic regulation of electron transport activity despite the presence of complex system of their detoxification in chloroplasts. In dark reactions of Calvin cycle, the regulatory responses involve a positive feedback principle being related to redox regulation of activities of several enzymes, which is sensitive to the reduction status of PSI acceptor side. The complex of regulatory reactions based on negative and positive feedback principles provides prolonged functioning of a chloroplast and high stability of photosynthetic activity under various light conditions.  相似文献   
10.
Size-related changes in hydraulic architecture, carbon allocation and gas exchange of Sclerolobium paniculatum (Leguminosae), a dominant tree species in Neotropical savannas of central Brazil (Cerrado), were investigated to assess their potential role in the dieback of tall individuals. Trees greater than ∼6-m-tall exhibited more branch damage, larger numbers of dead individuals, higher wood density, greater leaf mass per area, lower leaf area to sapwood area ratio (LA/SA), lower stomatal conductance and lower net CO2 assimilation than small trees. Stem-specific hydraulic conductivity decreased, while leaf-specific hydraulic conductivity remained nearly constant, with increasing tree size because of lower LA/SA in larger trees. Leaves were substantially more vulnerable to embolism than stems. Large trees had lower maximum leaf hydraulic conductance ( K leaf) than small trees and all tree sizes exhibited lower K leaf at midday than at dawn. These size-related adjustments in hydraulic architecture and carbon allocation apparently incurred a large physiological cost: large trees received a lower return in carbon gain from their investment in stem and leaf biomass compared with small trees. Additionally, large trees may experience more severe water deficits in dry years due to lower capacity for buffering the effects of hydraulic path-length and soil water deficits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号